Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Acta Neuropathol ; 147(1): 62, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526799

RESUMO

TMEM106B, a gene encoding a lysosome membrane protein, is tightly associated with brain aging, hypomyelinating leukodystrophy, and multiple neurodegenerative diseases, including frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Recently, TMEM106B polymorphisms have been associated with tauopathy in chronic traumatic encephalopathy (CTE) and FTLD-TDP patients. However, how TMEM106B influences Tau pathology and its associated neurodegeneration, is unclear. Here we show that loss of TMEM106B enhances the accumulation of pathological Tau, especially in the neuronal soma in the hippocampus, resulting in severe neuronal loss in the PS19 Tau transgenic mice. Moreover, Tmem106b-/- PS19 mice develop significantly increased abnormalities in the neuronal cytoskeleton, autophagy-lysosome activities, as well as glial activation, compared with PS19 and Tmem106b-/- mice. Together, our findings demonstrate that loss of TMEM106B drastically exacerbates Tau pathology and its associated disease phenotypes, and provide new insights into the roles of TMEM106B in neurodegenerative diseases.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Proteínas de Membrana , Proteínas do Tecido Nervoso , Animais , Humanos , Camundongos , Demência Frontotemporal/genética , Degeneração Lobar Frontotemporal/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas tau/genética
2.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370710

RESUMO

Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of structurally identified and yet-undefined metabolites across tissue cryosections. While numerous software packages enable pixel-by-pixel imaging of individual metabolites, the research community lacks a discovery tool that images all metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs informs discovery of unanticipated molecules contributing to shared metabolic pathways, uncovers hidden metabolic heterogeneity across cells and tissue subregions, and indicates single-timepoint flux through pathways of interest. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling and instrument drift, markedly enhances spatial image resolution, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent tool to enhance knowledge obtained from current spatial metabolite profiling technologies.

3.
J Cell Biol ; 223(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38252412

RESUMO

TDP-43 aggregation is a hallmark of neurodegeneration. In this issue, Iguchi et al. (https://doi.org/10.1083/jcb.202302048) report that IκB kinase (IKK), an important mediator of inflammation, phosphorylates cytoplasmic TDP-43 to promote proteasomal degradation, revealing an unexpected link between inflammation and TDP-43 homeostasis.


Assuntos
Proteínas de Ligação a DNA , Quinase I-kappa B , Complexo de Endopeptidases do Proteassoma , Humanos , Citoplasma , Proteínas de Ligação a DNA/química , Quinase I-kappa B/metabolismo , Inflamação , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo
4.
Front Microbiol ; 14: 1259960, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107861

RESUMO

Objectives: Virus infection closely associated with autoimmune disease. The study aimed to explore the autoantibody profiles and the correlation of autoantibodies with the disease severity and the prognosis of the coronavirus disease 2019 (COVID-19) patients. Methods: Three hundred thirty-seven hospitalized COVID-19 patients from 6th to 23rd January 2023 were enrolled. Logistic and Cox regression analyses were used to analyze the risk factors for the patient's disease severity and outcome. The association between Anti-extractable nuclear antigen antibody (ENA) positivity and the prognosis of COVID-19 patients was analyzed using Kaplan-Meier survival curves. Results: 137 of COVID-19 patients were detected positive for antinuclear antibody (ANA), 61 had positive results for ENA, and 38 were positive for ANA and ENA. ANA positivity rate was higher in non-severe illness group (p = 0.032). COVID-19 patients who died during hospitalization had a high rate of ENA positivity than convalescent patients (p = 0.002). Multivariate logistic regression showed that ANA positivity was a protective factor for the disease severity of COVID-19. Multivariate Cox regression analysis revealed that ENA positivity, white blood cells count (WBC), aspartate aminotransferase (AST), Creatinine (CREA), and CRP were independent risk factors for the outcome of COVID-19 patients, and that COVID-19 patients with ENA positivity had a lower cumulative survival rate (p = 0.002). Conclusion: A spectrum of autoantibodies were expressed in COVID-19 patients, among which ANA and ENA positivity was associated with the severity and prognosis of COVID-19. Therefore, autoantibodies may help to assess the disease severity and prognosis of COVID-19 patients.

5.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014238

RESUMO

TMEM106B, a gene encoding a lysosome membrane protein, is tightly associated with brain aging, hypomyelinating leukodystrophy, and multiple neurodegenerative diseases, including frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Recently, TMEM106B polymorphisms have been associated with tauopathy in chronic traumatic encephalopathy (CTE) and FTLD-TDP patients. However, how TMEM106B influences Tau pathology and its associated neurodegeneration, is unclear. Here we show that loss of TMEM106B enhances the accumulation of pathological Tau, especially in the neuronal soma in the hippocampus, resulting in severe neuronal loss in the PS19 Tau transgenic mice. Moreover, Tmem106b-/- PS19 mice develop significantly increased disruption of the neuronal cytoskeleton, autophagy-lysosomal function, and lysosomal trafficking along the axon as well as enhanced gliosis compared with PS19 and Tmem106b-/- mice. Together, our findings demonstrate that loss of TMEM106B drastically exacerbates Tau pathology and its associated disease phenotypes, and provide new insights into the roles of TMEM106B in neurodegenerative diseases.

6.
Cell ; 186(16): 3329-3331, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541193

RESUMO

The lysosomal membrane protein TMEM106B functions as a proviral factor in SARS-CoV-2 infection, though it was not known how. In this issue of Cell, Baggen et al. demonstrate that TMEM106B serves as an ACE2-independent receptor for SARS-CoV-2 entry by promoting the fusion of the viral membrane with the lysosomal membrane.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Internalização do Vírus , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso
7.
iScience ; 26(7): 107247, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37519899

RESUMO

Loss of function of progranulin (PGRN), encoded by the granulin (GRN) gene, is implicated in several neurodegenerative diseases. Several therapeutics to boost PGRN levels are currently in clinical trials. However, it is difficult to test the efficacy of PGRN-enhancing drugs in mouse models due to the mild phenotypes of Grn-/- mice. Recently, mice deficient in both PGRN and TMEM106B were shown to develop severe motor deficits and pathology. Here, we show that intracerebral ventricle injection of PGRN-expressing AAV1/9 viruses partially rescues motor deficits, neuronal loss, glial activation, and lysosomal abnormalities in Tmem106b-/-Grn-/- mice. Widespread expression of PGRN is detected in both the brain and spinal cord for both AAV subtypes. However, AAV9 but not AAV1-mediated expression of PGRN results in high levels of PGRN in the serum. Together, these data support using the Tmem106b-/-Grn-/- mouse strain as a robust mouse model to determine the efficacy of PGRN-elevating therapeutics.

8.
Sci Adv ; 9(18): eadd2676, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146150

RESUMO

TMEM106B, a lysosomal transmembrane protein, has been closely associated with brain health. Recently, an intriguing link between TMEM106B and brain inflammation has been discovered, but how TMEM106B regulates inflammation is unknown. Here, we report that TMEM106B deficiency in mice leads to reduced microglia proliferation and activation and increased microglial apoptosis in response to demyelination. We also found an increase in lysosomal pH and a decrease in lysosomal enzyme activities in TMEM106B-deficient microglia. Furthermore, TMEM106B loss results in a significant decrease in the protein levels of TREM2, an innate immune receptor essential for microglia survival and activation. Specific ablation of TMEM106B in microglia results in similar microglial phenotypes and myelination defects in mice, supporting the idea that microglial TMEM106B is critical for proper microglial activities and myelination. Moreover, the TMEM106B risk allele is associated with myelin loss and decreased microglial numbers in humans. Collectively, our study unveils a previously unknown role of TMEM106B in promoting microglial functionality during demyelination.


Assuntos
Doenças Desmielinizantes , Microglia , Humanos , Camundongos , Animais , Microglia/metabolismo , Camundongos Knockout , Encéfalo/metabolismo , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Proliferação de Células , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo
9.
Front Bioeng Biotechnol ; 11: 1169424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207121

RESUMO

Transfer RNA-derived small RNAs (tsRNAs) tRF-LeuCAG-002 (ts3011a RNA) is a novel class of non-coding RNAs biomarker for pancreatic cancer (PC). Reverse transcription polymerase chain reaction (RT-qPCR) has been unfit for community hospitals that are short of specialized equipment or laboratory setups. It has not been reported whether isothermal technology can be used for detection, because the tsRNAs have rich modifications and secondary structures compared with other non-coding RNAs. Herein, we have employed a catalytic hairpin assembly (CHA) circuit and clustered regularly interspaced short palindromic repeats (CRISPR) to develop an isothermal and target-initiated amplification method for detecting ts3011a RNA. In the proposed assay, the presence of target tsRNA triggers the CHA circuit that transforms new DNA duplexes to activate collateral cleavage activity of CRISPR-associated proteins (CRISPR-Cas) 12a, achieving cascade signal amplification. This method showed a low detection limit of 88 aM at 37 °C within 2 h. Moreover, it was demonstrated for the first time that, this method is less likely to produce aerosol contamination than RT-qPCR by simulating aerosol leakage experiments. This method has good consistency with RT-qPCR in the detection of serum samples and showed great potential for PC-specific tsRNAs point-of-care testing (POCT).

10.
iScience ; 26(5): 106579, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37250330

RESUMO

Hexanucleotide repeat expansion in the gene C9ORF72 is a leading cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). C9ORF72 deficiency leads to severe inflammatory phenotypes in mice, but exactly how C9ORF72 regulates inflammation remains to be fully elucidated. Here, we report that loss of C9ORF72 leads to the hyperactivation of the JAK-STAT pathway and an increase in the protein levels of STING, a transmembrane adaptor protein involved in immune signaling in response to cytosolic DNA. Treatment with a JAK inhibitor rescues the enhanced inflammatory phenotypes caused by C9ORF72 deficiency in cell culture and mice. Furthermore, we showed that the ablation of C9ORF72 results in compromised lysosome integrity, which could contribute to the activation of the JAK/STAT-dependent inflammatory responses. In summary, our study identifies a mechanism by which C9ORF72 regulates inflammation, which might facilitate therapeutic development for ALS/FTLD with C9ORF72 mutations.

11.
Acta Neuropathol ; 146(1): 97-119, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37120788

RESUMO

Heterozygous mutations in the granulin (GRN) gene, resulting in the haploinsufficiency of the progranulin (PGRN) protein, is a leading cause of frontotemporal lobar degeneration (FTLD). Complete loss of the PGRN protein causes neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disorder. Polymorphisms in the GRN gene have also been associated with several other neurodegenerative diseases, including Alzheimer's disease (AD), and Parkinson's disease (PD). PGRN deficiency has been shown to cause myelination defects previously, but how PGRN regulates myelination is unknown. Here, we report that PGRN deficiency leads to a sex-dependent myelination defect with male mice showing more severe demyelination in response to cuprizone treatment. This is accompanied by exacerbated microglial proliferation and activation in the male PGRN-deficient mice. Interestingly, both male and female PGRN-deficient mice show sustained microglial activation after cuprizone removal and a defect in remyelination. Specific ablation of PGRN in microglia results in similar sex-dependent phenotypes, confirming a microglial function of PGRN. Lipid droplets accumulate in microglia specifically in male PGRN-deficient mice. RNA-seq analysis and mitochondrial function assays reveal key differences in oxidative phosphorylation in male versus female microglia under PGRN deficiency. A significant decrease in myelination and accumulation of myelin debris and lipid droplets in microglia were found in the corpus callosum regions of FTLD patients with GRN mutations. Taken together, our data support that PGRN deficiency leads to sex-dependent alterations in microglia with subsequent myelination defects.


Assuntos
Doenças Desmielinizantes , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Animais , Feminino , Masculino , Camundongos , Cuprizona/metabolismo , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisossomos/metabolismo , Microglia/metabolismo , Progranulinas/genética
12.
bioRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066328

RESUMO

Mutations in the granulin (GRN) gene, resulting in haploinsufficiency of the progranulin (PGRN) protein, are a leading cause of frontotemporal lobar degeneration (FTLD) and PGRN polymorphisms are associated with Alzheimer's disease (AD) and Parkinson's disease (PD). PGRN is a key regulator of microglia-mediated inflammation but the mechanism is still unknown. Here we report that PGRN interacts with sPLA2-IIA, a secreted phospholipase involved in inflammatory responses, to downregulate sPLA2-IIA activities and levels. sPLA2-IIA expression modifies PGRN deficiency phenotypes in mice and sPLA2-IIA inhibition rescues inflammation and lysosomal abnormalities in PGRN deficient mice. Furthermore, FTLD patients with GRN mutations show increased levels of sPLA2-IIA in astrocytes. Our data support sPLA2-IIA as a critical target for PGRN and a novel therapeutic target for FTLD-GRN.

13.
BMC Immunol ; 23(1): 57, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384440

RESUMO

BACKGROUND: To determine the dynamic SARS-CoV-2 specific antibody levels induced by 3 doses of an inactivated COVID-19 vaccine, CoronaVac. An observational, prospective cohort study was performed with 93 healthy healthcare workers from a tertiary hospital in Nanjing, China. Serum SARS-CoV-2 specific IgM, IgG, and neutralizing antibodies (NAb) were measured at different time points among participants who received 3 doses of inactivated COVID-19 vaccine. RESULTS: 91.3% (85/93) and 100% (72/72) participants showed positive both for SARS-CoV-2 specific IgG and NAb after 2-dose CoronaVac and after 3-dose CoronaVac, respectively. Anti-SARS-CoV-2 IgG responses reached 91.21 (55.66-152.06) AU/mL, and surrogate NAb was 47.60 (25.96-100.81) IU/mL on day 14 after the second dose. Anti-SARS-CoV-2 IgG responses reached 218.29 (167.53-292.16) AU/mL and surrogate NAb was 445.54 (171.54-810.90) IU/mL on day 14 after the third dose. Additionally, SARS-CoV-2 specific surrogate neutralizing antibody titers were highly correlated with serum neutralization activities against Ancestral, Omicron, and Delta strains. Moreover, significantly higher SARS-CoV-2 IgG responses, but not NAb responses, were found in individuals with breakthrough infection when compared to that of 3-dose CoronaVac recipients. CONCLUSIONS: CoronaVac elicited robust SARS-CoV-2 specific humoral responses. Surrogate NAb assay might substitute for pseudovirus neutralization assay. Monitoring SARS-CoV-2 antibody responses induced by vaccination would provide important guidance for the optimization of COVID-19 vaccines.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Vacinas contra COVID-19 , Imunidade Humoral , Estudos Prospectivos , Vacinas de Produtos Inativados , Estudos Longitudinais , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Antivirais , Imunoglobulina G , Estudos de Coortes
14.
J Clin Lab Anal ; 36(12): e24778, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36447425

RESUMO

BACKGROUND: Clinical feature and viral etiology for acute respiratory infection (ARI) in the community was unknown during coronavirus disease 2019 (COVID-19) pandemic. OBJECTIVE: In a retrospective study, we aimed to characterize the clinical feature and etiology for the ARI patients admitted to the outpatient fever clinic in Nanjing Drum Tower Hospital between November 2020 and March 2021. METHODS: Fifteen common respiratory pathogens were tested using pharyngeal swabs by multiplex reverse transcriptase-polymerase chain reaction assays. RESULTS: Of the 242 patients, 56 (23%) were tested positive for at least one viral agent. The predominant viruses included human rhinovirus (HRV) (5.4%), parainfluenza virus type III (PIV-III) (5.0%), and human coronavirus-NL63 (HCoV-NL63) (3.7%). Cough, sputum, nasal obstruction, and rhinorrhea were the most prevalent symptoms in patients with viral infection. Elderly and the patients with underlying diseases were susceptible to pneumonia accompanied with sputum and chest oppression. Three (5.4%) patients in virus infection group, whereas 31 (16.7%) in non-viral infection group (p = 0.033), were empirically prescribed with antiviral agents. Among 149 patients who received antibiotic therapy, 30 (20.1%) patients were later identified with viral infection. CONCLUSION: Our study indicated the importance of accurate diagnosis of ARI, especially during the COVID-19 pandemic, which might facilitate appropriate clinical treatment.


Assuntos
COVID-19 , Infecções Respiratórias , Viroses , Vírus , Humanos , Lactente , Idoso , Pandemias , COVID-19/epidemiologia , Centros de Atenção Terciária , Estudos Retrospectivos , Pacientes Ambulatoriais , Infecções Respiratórias/epidemiologia , Febre
15.
Redox Biol ; 56: 102457, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063729

RESUMO

We previously reported a depletion of murine regenerating islet-derived protein 2 (REG2) in pancreatic islets of glutathione peroxidase-1 (Gpx1) overexpressing (OE) mice. The present study was to explore if and how the REG2 depletion contributed to an augmented glucose stimulated insulin secretion (GSIS) in OE islets. After we verified a consistent depletion (90%, p < 0.05) of REG2 mRNA, transcript, and protein in OE islets compared with wild-type (WT) controls, we treated cultured and perifused OE islets (70 islets/sample) with REG2 (1 µg/ml or ml · min) and observed 30-40% (p < 0.05) inhibitions of GSIS by REG2. Subsequently, we obtained evidences of co-immunoprecipitation, cell surface ligand binding, and co-immunofluorescence for a ligand-receptor binding between REG2 and transmembrane, L-type voltage-dependent Ca2+ channel (CaV1.2) in beta TC3 cells. Mutating the C-type lectin binding domain of REG2 or deglycosylating CaV1.2 removed the inhibition of REG2 on GSIS and(or) the putative binding between the two proteins. Treating cultured OE and perifused WT islets with REG2 (1 µg/ml or ml · min) decreased (p < 0.05) Ca2+ influx triggered by glucose or KCl. An intraperitoneal (ip) injection of REG2 (2 µg/g) to OE mice (6-month old, n = 10) decreased their plasma insulin concentration (46%, p < 0.05) and elevated their plasma glucose concentration (25%, p < 0.05) over a 60 min period after glucose challenge (ip, 1 g/kg). In conclusion, our study identifies REG2 as a novel regulator of Ca2+ influx and insulin secretion, and reveals a new cascade of GPX1/REG2/CaV1.2 to explain how REG2 depletion in OE islets could decrease its binding to CaV1.2, resulting in uninhibited Ca2+ influx and augmented GSIS. These findings create new links to bridge redox biology, tissue regeneration, and insulin secretion.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Glicemia/metabolismo , Glucose/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ligantes , Camundongos , Proteínas Associadas a Pancreatite/metabolismo , RNA Mensageiro/metabolismo , Glutationa Peroxidase GPX1
16.
J Biol Chem ; 298(9): 102348, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933009

RESUMO

Progranulin (PGRN) is a glycoprotein implicated in several neurodegenerative diseases. It is highly expressed in microglia and macrophages and can be secreted or delivered to the lysosome compartment. PGRN comprises 7.5 granulin repeats and is processed into individual granulin peptides within the lysosome, but the functions of these peptides are largely unknown. Here, we identify CD68, a lysosome membrane protein mainly expressed in hematopoietic cells, as a binding partner of PGRN and PGRN-derived granulin E. Deletion analysis of CD68 showed that this interaction is mediated by the mucin-proline-rich domain of CD68. While CD68 deficiency does not affect the lysosomal localization of PGRN, it results in a specific decrease in the levels of granulin E but no other granulin peptides. On the other hand, the deficiency of PGRN, and its derivative granulin peptides, leads to a significant shift in the molecular weight of CD68, without altering CD68 localization within the cell. Our results support that granulin E and CD68 reciprocally regulate each other's protein homeostasis.


Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Granulinas , Proteostase , Granulinas/metabolismo , Lisossomos/metabolismo , Mucinas/metabolismo , Progranulinas/metabolismo , Prolina/metabolismo
17.
Acta Neuropathol Commun ; 10(1): 33, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287730

RESUMO

TMEM106B, a type II lysosomal transmembrane protein, has recently been associated with brain aging, hypomyelinating leukodystrophy, frontotemporal lobar degeneration (FTLD) and several other brain disorders. TMEM106B is critical for proper lysosomal function and TMEM106B deficiency leads to myelination defects, FTLD related pathology, and motor coordination deficits in mice. However, the physiological and pathological functions of TMEM106B in the brain are still not well understood. In this study, we investigate the role of TMEM106B in the cerebellum, dysfunction of which has been associated with FTLD and other brain disorders. We found that TMEM106B is ubiquitously expressed in neurons in the cerebellum, with the highest levels in the Purkinje neurons. Aged TMEM106B-deficient mice show significant loss of Purkinje neurons specifically in the anterior lobe of the cerebellum. Increased microglia and astrocyte activation, as well as an accumulation of ubiquitinated proteins, p62 and TDP-43 were also detected in the cerebellum of aged TMEM106B deficient mice. In the young mice, myelination defects and a significant loss of synapses between Purkinje and deep cerebellar nuclei neurons were observed. Interestingly, TMEM106B deficiency causes distinct lysosomal phenotypes in different types of neurons and glia in the cerebellum and frontal cortex. In humans, TMEM106B rs1990622 risk allele (T/T) is associated with increased Purkinje neuron loss. Taken together, our studies support that TMEM106B regulates lysosomal function in a cell-type-specific manner and TMEM106B is critical for maintaining synaptic integrity and neural functions in the cerebellum.


Assuntos
Encefalopatias , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Proteínas de Membrana , Proteínas do Tecido Nervoso , Animais , Encefalopatias/genética , Demência Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Proteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Células de Purkinje/patologia
18.
Mol Neurodegener ; 17(1): 15, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120524

RESUMO

BACKGROUND: Haploinsufficiency of progranulin (PGRN) is a leading cause of frontotemporal lobar degeneration (FTLD). PGRN is comprised of 7.5 granulin repeats and is processed into individual granulin peptides in the lysosome. However, very little is known about the levels and regulations of individual granulin peptides due to the lack of specific antibodies. RESULTS: Here we report the generation and characterization of antibodies specific to each granulin peptide. We found that the levels of granulins C, E and F are regulated differently  compared to granulins A and B in various tissues. The levels of PGRN and granulin peptides vary in different brain regions and the ratio between granulins and PGRN is highest in the cortical region in the adult male mouse brain. Granulin-A is localized in the lysosome in both neurons and microglia and its levels in microglia increase under pathological conditions. Interestingly,  the levels of granulin A in microglia change correspondingly with PGRN in response to stroke but not demyelination. Furthermore, deficiency of lysosomal proteases and the PGRN binding partner prosaposin leads to alterations in the ratios between individual granulin peptides. Granulins B, C and E are heavily glycosylated and the glycosylation patterns can be regulated. CONCLUSION: Our results support that the levels of individual granulin peptides are differentially regulated under physiological and pathological conditions and provide novel insights into how granulin peptides function in the lysosome.


Assuntos
Degeneração Lobar Frontotemporal , Peptídeos e Proteínas de Sinalização Intercelular , Animais , Degeneração Lobar Frontotemporal/metabolismo , Granulinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Progranulinas
19.
Brain Commun ; 4(1): fcab310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35169707

RESUMO

Haploinsufficiency of the progranulin protein is a leading cause of frontotemporal lobar degeneration. Accumulating evidence support a crucial role of progranulin in the lysosome. Progranulin comprises 7.5 granulin repeats and is known to traffic to lysosomes via direct interactions with prosaposin or sortilin. Within the lysosome, progranulin gets processed into granulin peptides. Here, we report that sortilin and prosaposin independently regulate lysosomal trafficking of progranulin in vivo. The deletion of either prosaposin or sortilin alone results in a significant decrease in the ratio of granulin peptides versus full-length progranulin in mouse brain lysates. This decrease is further augmented by the deficiency of both prosaposin and sortilin. A concomitant increase in the levels of secreted progranulin in the serum was observed. Interestingly, while the deletion of both prosaposin and sortilin totally abolishes lysosomal localization of progranulin in neurons, it has a limited effect on lysosomal trafficking of progranulin in microglia, suggesting the existence of a novel sortilin and prosaposin independent pathway mediating progranulin lysosomal trafficking. In summary, our studies shed light on the regulation of lysosomal trafficking and processing of progranulin in vivo.

20.
Life Sci Alliance ; 4(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34103390

RESUMO

Haploinsufficiency of progranulin (PGRN) is a leading cause of frontotemporal lobar degeneration (FTLD). PGRN polymorphisms are associated with Alzheimer's disease. PGRN is highly expressed in the microglia near Aß plaques and influences plaque dynamics and microglial activation. However, the detailed mechanisms remain elusive. Here we report that PGRN deficiency reduces human APP and Aß levels in the young male but not female mice. PGRN-deficient microglia exhibit increased expression of markers associated with microglial activation, including CD68, galectin-3, TREM2, and GPNMB, specifically near Aß plaques. In addition, PGRN loss leads to up-regulation of lysosome proteins and an increase in the nuclear localization of TFE3, a transcription factor involved in lysosome biogenesis. Cultured PGRN-deficient microglia show enhanced nuclear translocation of TFE3 and inflammation in response to Aß fibril treatment. Taken together, our data revealed a sex- and age-dependent effect of PGRN on APP metabolism and a role of PGRN in regulating lysosomal activities and inflammation in plaque-associated microglia.


Assuntos
Degeneração Lobar Frontotemporal/metabolismo , Placa Amiloide/metabolismo , Progranulinas/metabolismo , Fatores Etários , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/fisiologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Degeneração Lobar Frontotemporal/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisossomos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Placa Amiloide/fisiopatologia , Progranulinas/fisiologia , Proteínas , Receptores Imunológicos/metabolismo , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...